Essential role of EDHF in the initiation and maintenance of adrenergic vasomotion in rat mesenteric arteries.
نویسندگان
چکیده
The possible roles of endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)), nitric oxide (NO), arachidonic acid (AA) metabolites, and Ca(2+)-activated K(+) (K(Ca)) channels in adrenergically induced vasomotion were examined in pressurized rat mesenteric arteries. Removal of the endothelium or buffering [Ca(2+)](i) selectively in endothelial cells with BAPTA eliminated vasomotion in response to phenylephrine (PE; 10.0 microM). In arteries with intact endothelium, inhibition of NO synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME; 300.0 microM) or N(omega)-nitro-l-arginine (l-NNA; 300.0 microM) did not eliminate vasomotion. Neither inhibition of cGMP formation with 10.0 microM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) nor inhibition of prostanoid formation (10.0 microM indomethacin) eliminated vasomotion. Similarly, inhibition of AA cytochrome P-450 metabolism with an intraluminal application of 17-octadecynoic acid (17-ODYA) or 6-(2-propargyloxyphenyl)hexanoic acid (PPOH) failed to eliminate vasomotion. In contrast, intraluminal application of the K(Ca) channel blockers apamin (250.0 nM) and charybdotoxin (100.0 nM), together, abolished vasomotion and changed synchronous Ca(2+) oscillations in smooth muscle cells to asynchronous propagating Ca(2+) waves. Apamin, charybdotoxin, or iberiotoxin (100.0 nM) alone did not eliminate vasomotion, nor did the combination of apamin and iberiotoxin. The results show that adrenergic vasomotion in rat mesenteric arteries is critically dependent on Ca(2+)-activated K(+) channels in endothelial cells. Because these channels (small- and intermediate-conductance K(Ca) channels) are a recognized component of EDHF, we conclude therefore that EDHF is essential for the development of adrenergically induced vasomotion.
منابع مشابه
Role of endothelium-derived hyperpolarizing factor in phenylephrine-induced oscillatory vasomotion in rat small mesenteric artery.
BACKGROUND In small mesenteric arteries, endothelium-derived hyperpolarizing factor (EDHF) in addition to endothelium-derived relaxing factors (EDRFs) including NO plays an important role in acetylcholine-induced vasodilation. It has been reported that EDRFs play an important role in alpha(1)-adrenoceptor agonist-induced oscillatory vasomotion and in limiting vasoconstrictor response to the ago...
متن کاملRelaxatory Effect of Gamma-Aminobutyric Acid (GABA) is Mediated by Same Pathway in Diabetic and Normal Rat Mesenteric Bed vessel
Objective(s) Diabetes related dysfunction of resistance vessels is associated with vascular occlusive diseases. Vasorelaxant agents may have a role in control of diabetic cardiovascular complications. Gamma aminobutyric acid (GABA) has demonstrated to cause vasorelaxation. The present study was designed to determine i) the vasorelaxatory effect of GABA on diabetic vessels and ii) the role of e...
متن کاملEstrogen replacement enhances EDHF-mediated vasodilation of mesenteric and uterine resistance arteries: role of endothelial cell Ca2+.
Endothelium-derived hyperpolarizing factor (EDHF) plays an important role in the regulation of vascular microcirculatory tone. This study explores the role of estrogen in controlling EDHF-mediated vasodilation of uterine resistance arteries of the rat and also analyzes the contribution of endothelial cell (EC) Ca(2+) signaling to this process. A parallel study was also performed with mesenteric...
متن کاملRole of myoendothelial communication on arterial vasomotion.
THE ARTERIAL SYSTEM secures an adequate supply of blood to organs. In many vessels, cyclic variations of the arterial diameter, a phenomenon called vasomotion, may contribute to the regulation of blood flow. Vasomotion is generated by synchronous oscillations in the cytosolic calcium concentration of adjacent smooth muscle cells (SMCs). Gap junctions mediating electrical and chemical couplings ...
متن کاملAdrenergic stimulation of rat resistance arteries affects Ca 2 1 sparks , Ca 2 1 waves , and Ca 2 1 oscillations
Mauban, Joseph R. H., Christine Lamont, C. William Balke, and W. Gil Wier. Adrenergic stimulation of rat resistance arteries affects Ca21 sparks, Ca21 waves, and Ca21 oscillations. Am J Physiol Heart Circ Physiol 280: H2399–H2405, 2001.—Confocal laser scanning microscopy and fluo 4 were used to visualize local and whole cell Ca21 transients within individual smooth muscle cells (SMC) of intact,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 287 2 شماره
صفحات -
تاریخ انتشار 2004